Sains Malaysiana 53(3)(2024): 575-589
http://doi.org/10.17576/jsm-2024-5303-08
Proteomics Shows the Role of Paederia scandens in
Ameliorating Non-alcoholic Fatty Liver Disease in a Rat Model
(Proteomik Menunjukkan Peranan Paederia scandens dalam memulihkan Penyakit Hati Berlemak Bukan Alkohol pada Model Tikus)
JING WANG1†, TIEJIN TONG1†& QIANG WU1,*
Agricultural College, Yibin Vocational and
Technical College, Yibin 644000, China
Received: 6 July
2023/Accepted: 9 February 2024
Abstract
This study was conducted to evaluate the effect of Paederia scandens on high-fat dietinduced non-alcoholic fatty liver disease (NAFLD) in a rat model and further show the
therapeutic mechanisms of Paederia scandens. Thirty rats weighing 180 ± 12 g (6 weeks old) were randomly divided into three
groups: A control group (CG), a high-fat diet model group (HF), and a Paederia scandens intervention group (PS). After 45 days, the
rats' serum lipid metabolism, liver injury parameters, and liver proteomics
were detected. The results indicated that dietary Paederia scandens significantly reduced the
levels of triglycerides, total cholesterol, glucose, and low-density
lipoprotein cholesterol in the NAFLD rats compared with those in the HF group.
Meanwhile, decreased levels of alanine aminotransferase and aspartate
transaminase were observed in rats of the PS group. In addition, 382
differentially abundant proteins were identified between the HF and PS groups.
Protein-protein interaction network analysis identified 14 keystone proteins
that might play critical roles in ameliorating NAFLD. In particular, Paederia scandens treatment significantly upregulated the levels of Hadh, Hadhb, Acadl, Acox1, Acox3,
Cyp3a2, and Cyp1a1, which are involved in fatty acid β‑oxidation,
PPAR, and cytochrome P450 signaling pathways. Hence, the data demonstrated that Paederia scandens ameliorates hepatic lipid accumulation
and impairment by enhancing fatty acid β-oxidation and activating PPAR and
cytochrome P450 signaling pathways. These data provide new insights into the
treatment of NAFLD and suggest the potential of Paederia scandens as an effective therapy.
Keywords: Non-alcoholic fatty liver
disease; Paederia scandens; proteomics; rat; therapeutic
mechanisms
Abstrak
Penyelidikan ini dijalankan untuk menilai kesan Paederia scandens terhadap penyakit hati berlemak bukan alkohol (NAFLD) akibat diet tinggi lemak pada model tikus dan seterusnya menunjukkan mekanisme terapeutik Paederia scandens. Tiga puluh ekor tikus dengan berat 180 ± 12 g (6 minggu) dibahagikan secara rawak kepada tiga kumpulan: Kumpulan kawalan (CG), kumpulan model diet tinggi lemak (HF) dan kumpulan intervensi Paederia scandens (PS). Selepas 45 hari, metabolisme lipid serum tikus,
parameter kecederaan hati dan proteomik hati telah dikesan. Keputusan menunjukkan bahawa diet Paederia scandens secara signifikan mengurangkan tahap trigliserida, jumlah kolesterol, glukosa dan kolesterol lipoprotein berketumpatan rendah pada tikus NAFLD berbanding dengan kumpulan HF. Sementara itu, penurunan tahap alanine aminotransferase dan aspartate transaminase diperhatikan pada tikus kumpulan PS. Di samping itu, 382
protein yang banyak berbeza telah dikenal pasti antara kumpulan HF dan PS. Analisis rangkaian interaksi protein-protein mengenal pasti 14 protein kiston yang mungkin memainkan peranan penting dalam memperbaiki NAFLD. Khususnya, rawatan Paederia scandens dengan ketara mengimbangi tahap Hadh, Hadhb, Acadl, Acox1, Acox3,
Cyp3a2 dan Cyp1a1 yang terlibat dalam pengoksidaan β asid lemak, PPAR dan laluan isyarat sitokrom P450. Oleh itu, data menunjukkan bahawa Paederia scandens memperbaiki pengumpulan dan kemerosotan lipid hepatik dengan meningkatkan pengoksidaan β asid lemak dan mengaktifkan laluan isyarat PPAR dan sitokrom P450. Data ini memberikan pandangan baharu tentang rawatan NAFLD dan mencadangkan potensi Paederia scandens sebagai terapi yang berkesan.
Kata kunci: Mekanisme terapeutik; penyakit hati berlemak bukan alkohol; Paederia scandens; proteomik; tikus
REFERENCES
Ahmed, A., Wong, R.J. & Harrison, S.A. 2015. Nonalcoholic fatty
liver disease review: Diagnosis, treatment, and outcomes. Clinical Gastroenterology and Hepatology 13(12): 2062-2070. https://doi.org/10.1016/j.cgh.2015.07.029
Ahmed, M.H. & Byrne, C.D. 2009. Current treatment of
non‐alcoholic fatty liver disease. Diabetes,
Obesity and Metabolism 11(3): 188-195. https://doi.org/
10.1111/j.1463-1326.2008.00926.x
Altınok-Yipel, F., Tekeli, İO., Özsoy,
Ş.Y., Güvenç, M., Kaya, A. & Yipel, M. 2019. Hepatoprotective activity of linalool in rats against liver injury induced by carbon
tetrachloride. International Journal for
Vitamin and Nutrition Research 90(3-4):
302-308. https://doi.org/10.1024/0300-9831/a000581
Aslam, B., Basit, M., Nisar,
M.A., Khurshid, M. & Rasool,
M.H. 2016. Proteomics: technologies and their applications. Journal of Chromatographic Science 55(2): 182-196. https://doi.org/10.1093/chromsci/bmw167
Brosch, M., Yu, L., Hubbard, T.
& Choudhary, J. 2009. Accurate and sensitive
peptide identification with Mascot Percolator. Journal of Proteome Research 8(6): 3176-3181.
https://doi.org/10.1021/pr800982s
Chen, J., Thomsen, M. & Vitetta, L. 2019.
Interaction of gut microbiota with dysregulation of bile acids in the
pathogenesis of nonalcoholic fatty liver disease and potential therapeutic
implications of probiotics. Journal of
Cellular Biochemistry 120(3): 2713-2720. https://doi.org/10.1002/jcb.27635
Chen, M., Xie, Y., Gong, S., Wang, Y., Yu, H.,
Zhou, T., Huang, F., Guo, X., Zhang, H., Huang, R.,
Han, Z., Xing, Y., Liu, Q., Tong, G. & Zhou, H. 2021. Traditional Chinese
medicine in the treatment of nonalcoholic steatohepatitis. Pharmacological Research 172: 105849.
https://doi.org/10.1016/j.phrs.2021.105849
Chen, B.C., He, H.Y., Niu, K., Rui, K., Huang, J.G., Xie, Y.Q.
& Xiao, M. 2022. Network pharmacology-based approach uncovers the JAK/STAT
signaling mechanism underlying Paederia scandens extract treatment of rheumatoid arthritis. Am. J. Transl. Res. 14(8): 5295-5307.
Cheng, B-H., Sheen, L-Y. & Chang, S-T. 2018. Hypolipidemic effects of S-(+)-linalool and essential oil from Cinnamomum osmophloeum ct. linalool leaves in mice. Journal of
Traditional and Complementary Medicine 8(1): 46-52. https://doi.org/
10.1016/j.jtcme.2017.02.002
Cho, S-Y., Jun, H-J., Lee, J.H., Jia, Y., Kim,
K.H. & Lee, S-J. 2011. Linalool reduces the expression of
3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding
protein-2-and ubiquitin-dependent mechanisms. FEBS Letters 585(20): 3289-3296.
https://doi.org/10.1016/j.febslet.2011.09.012
Costa, G., Francisco, V.C., Lopes, M.T., Cruz, M.T. & Batista, M.
2011. Intracellular signaling pathways modulated by phenolic compounds: Application
for new anti-inflammatory drugs discovery. Curr. Med. Chem. 19(18): 2876-2900.
https://doi.org/10.2174/092986712800672049
Dai, D., Qi, G., Wang, J., Zhang, H., Qiu, K.,
Han, Y., Wu, Y. & Wu, S. 2022. Dietary organic acids ameliorate high
stocking density stress-induced intestinal inflammation through the restoration
of intestinal microbiota in broilers. J. Anim. Sci. Biotechno. 13(1): 124. https://doi.org/10.1186/s40104-022-00776-2
Deng, S., Feng, S., Wang, W., Zhao, F. & Gong, Y. 2018. Biomarker
and drug target discovery using quantitative proteomics post-intracerebral
hemorrhage stroke in the rat brain. J. Mol. Neurosci. 66: 639-648. https://doi.org/10.1007/s12031-018-1206-z
Du, G., Wang, Y., Zhang, R., Tan, C., He, X., Hu, J., Zhang, L., Chen,
R. & Qin, H. 2009. Multi-target and multi-component pattern, a superficial
understanding of the action mechanism of Traditional Chinese Medicine. Modernization
of Traditional Chinese Medicine and Materia Materia-World Science and
Technology 11(4): 480-484.
Duan, Y., Pan, X., Luo, J.,
Xiao, X., Li, J., Bestman, P.L. & Luo, M. 2022.
Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 13: 880298.
https://doi.org/10.3389/fimmu.2022.880298
Fuchs, C.D., Traussnigg, S.A. & Trauner, M. 2016. Nuclear receptor modulation for the
treatment of nonalcoholic fatty liver disease. Seminars Liver Disease 36(01): 069-086. https://doi.org/10.1055/s-0036-1571296
Gholam, P.M., Flancbaum,
L., Machan, J.T., Charney,
D.A. & Kotler, D.P. 2007. Nonalcoholic fatty liver disease in severely
obese subjects. Official Journal of the
American College of Gastroenterology 102(2): 399-408.
Godoy-Matos, A.F., Silva
Júnior, W.S. & Valerio, C.M. 2020. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetology & Metabolic Syndrome 12: 60.
https://doi.org/10.1186/s13098-020-00570-y
Gu, D., Reynolds, K., Wu, X.,
Chen, J., Duan, X., Reynolds, R.F., Whelton, P.K. & He, J. 2005. Prevalence of the
metabolic syndrome and overweight among adults in China. The Lancet 365(9468): 1398-1405.
Hafner, M., Rezen,
T. & Rozman, D. 2011. Regulation of hepatic
cytochromes p450 by lipids and cholesterol. Current
Drug Metabolism 12(2): 173-185. https://doi.org/ 10.2174/138920011795016890
Hansen, H.H., Feigh, M., Veidal,
S.S., Rigbolt, K.T., Vrang,
N. & Fosgerau, K. 2017. Mouse models of
nonalcoholic steatohepatitis in preclinical drug
development. Drug Discov. Today 22(11):
1707-1718. https://doi.org/10.1016/j.drudis.2017.06.007
Heindel, J.J., Blumberg,
B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M.A., Nadal, A., Palanza,
P., Panzica, G. & Sargis, R. 2017. Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology 68: 3-33.
https://doi.org/ 10.1016/J.REPROTOX.2016.10.001
Hou, S.X., Zhu, W.J., Pang,
M.Q., Jeffry, J. & Zhou, L.L. 2014. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae)
on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem. Toxicol. 64: 57-64. https://doi.org/10.1016/j.fct.2013.11.022
Krifka, S., Spagnuolo, G., Schmalz, G. & Schweikl, H.
2013. A review of adaptive mechanisms in cell responses towards oxidative
stress caused by dental resin monomers. Biomaterials 34(19): 4555-4563. https://doi.org/ 10.1016/j.biomaterials.2013.03.019
Li, F-S. & Weng, J-K. 2017. Demystifying
traditional herbal medicine with modern approach. Nature Plants 3(8):
17109. https://doi.org/10.1038/nplants.2017.109
Lian, C-Y., Zhai,
Z-Z., Li, Z-F. & Wang, L. 2020. High fat diet-triggered non-alcoholic fatty
liver disease: A review of proposed mechanisms. Chemico-Biological Interactions 330: 109199.
https://doi.org/10.1016/j.cbi.2020.109199
Liu, L., Yang, Y., Yang, F., Lin, Y., Liu, K., Wang, X. & Zhang, Y.
2023. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Human & Experimental Toxicology 42:
09603271221149011. https://doi.org/ 10.1177/09603271221149011
Liu, Q., Bengmark, S. & Qu, S. 2010. The
role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver
disease (NAFLD). Lipids in Health and
Disease 9(1): 1-9. https://doi.org/10.1186/1476-511X-9-42
Ma, H. & Patti, M.E. 2014. Bile acids, obesity, and the metabolic
syndrome. Best Practice & Research
Clinical Gastroenterology 28(4): 573-583. https://doi.org/
10.1016/j.bpg.2014.07.004
Machado, M.V. & Diehl,
A.M. 2016. Pathogenesis of
nonalcoholic steatohepatitis. Gastroenterology 150(8): 1769-1777.
https://doi.org/10.1053/j.gastro.2016.02.066
Madhuri, K. & Naik, P.R. 2017. Ameliorative effect of borneol,
a natural bicyclic monoterpene against hyperglycemia, hyperlipidemia and
oxidative stress in streptozotocin-induced diabetic Wistar rats. Biomedicine
& Pharmacotherapy 96: 336-347. https://doi.org/10.1016/j.biopha.2017.09.122
Mazani, M., Rezagholizadeh,
L., Shamsi, S., Mahdavifard,
S., Ojarudi, M., Salimnejad,
R. & Salimi, A. 2022. Protection of CCl4-induced
hepatic and renal damage by linalool. Drug
and Chemical Toxicology 45(3): 963-971. https://doi.org/ 10.1080/01480545.2020.1792487
Michel, M. & Schattenberg, J.M. 2020.
Effectiveness of lifestyle interventions in NAFLD (nonalcoholic fatty liver
disease)–how are clinical trials affected? Expert Opin.
Inv. Drug 29(2): 93-97. https://doi.org/10.1080/13543784.2020.1716333
Minnich, A., Tian, N., Byan, L. & Bilder, G. 2001. A
potent PPARα agonist stimulates mitochondrial fatty acid β-oxidation
in liver and skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism 280(2):
E270-E279. https://doi.org/ 10.1152/ajpendo.2001.280.2.E270
Nuño-Lámbarri, N.,
Barbero-Becerra, V.J., Uribe, M. & Chávez-Tapia, N.C. 2016. Mitochondrial molecular
pathophysiology of nonalcoholic fatty liver disease: A proteomics approach. International Journal of Molecular Sciences 17(3): 281. https://doi.org/10.3390/ijms17030281
Ola, O.S. & Sofolahan, T.A. 2021. A
monoterpene antioxidant, linalool, mitigates benzene-induced oxidative
toxicities on hematology and liver of male rats. Egyptian Journal of Basic and Applied Sciences 8(1): 39-53. https://doi.org/
10.1080/2314808X.2021.1898141
Parker, H.M., Johnson, N.A., Burdon, C.A., Cohn, J.S., O’Connor, H.T.
& George, J. 2012. Omega-3 supplementation and non-alcoholic fatty liver
disease: A systematic review and meta-analysis. Journal of Hepatology 56(4): 944-951.
https://doi.org/ 10.1016/j.jhep.2011.08.018
Peng, W., Qiu, X.Q., Shu, Z.H.,
Liu, Q.C., Hu, M.B., Han, T., Rahman, K., Qin, L.P. & Zheng, C.J. 2015. Hepatoprotective activity of total iridoid glycosides isolated from Paederia scandens (lour.) Merr. var. tomentosa. J. Ethnopharmacol.
174: 317-321. https://doi.org/10.1016/j.jep.2015.08.032
Polyzos, S.A., Kang, E.S.,
Boutari, C., Rhee, E.J. & Mantzoros, C.S. 2020. Current and emerging
pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism 111: 154203.
https://doi.org/10.1016/j.metabol.2020.154203
Pyper, S.R., Viswakarma,
N., Yu, S. & Reddy, J.K. 2010. PPARα: Energy combustion, hypolipidemia, inflammation and cancer. Nuclear Receptor Signaling 8(1): nrs.08002.
https://doi.org/10.1621/nrs.08002
Romero-Gómez, M., Zelber-Sagi, S. & Trenell, M. 2017. Treatment of NAFLD with diet, physical
activity and exercise. Journal of Hepatology 67(4): 829-846. https://doi.org/10.1016/j.jhep.2017.05.016
Savitski, M.M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. 2015. A scalable approach for protein false
discovery rate estimation in large proteomic data sets. Molecular & Cellular Proteomics 14(9): 2394-2404.
https://doi.org/ 10.1074/mcp.M114.046995
Straus, D.S. & Glass, C.K. 2007. Anti-inflammatory actions of PPAR
ligands: New insights on cellular and molecular mechanisms. Trends in Immunology 28(12): 551-558.
https://doi.org/10.1016/j.it.2007.09.003
Szklarczyk, D., Morris, J.H., Cook,
H., Kuhn, M., Wyder, S., Simonovic,
M., Santos, A., Doncheva, N.T., Roth, A., Bork, P.,
Jensen, L.J. & von Mering, C. 2016. The STRING
database in 2017: quality-controlled protein–protein association networks, made
broadly accessible. Nucleic Acids
Research 45(D1): D362-D368.
https://doi.org/ 10.1093/nar/gkw937
Tang, C.L., Ma, N., Sun, W.Y., Wang, W., Zhu, L.P., Wang, R.Q., Liu,
J.Y. & Zhang, X.P. 2022. Hepatoprotection of Paederia scandens (Lour.) Merr. on
acetaminophen-related hepatic injury rats by (1)H-NMR-based metabonomics coupled with network pharmacology. Evidence-based Complementary and Alternative
Medicine 2022: 1375864. https://doi.org/10.1155/2022/1375864
Trung, N.Q., Thu-Thanh, N.T., Hoa, N.T., Mechler, A. & Vo, Q.V. 2023. Feruloylmonotropeins:
Promising natural antioxidants in Paederia scandens. RSC Adv. 13: 6153-6159. https://doi.org/10.1039/D3RA00458A
Vilar-Gomez, E.,
Martinez-Perez, Y., Calzadilla-Bertot, L., Torres-Gonzalez, A., Gra-Oramas, B.,
Gonzalez-Fabian, L., Friedman, S.L., Diago, M. & Romero-Gomez, M. 2015. Weight loss through
lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149(2): 367-378. https://doi.org/10.1053/j.gastro.2015.04.005
Wang, S., Sheng, F., Zou,
L., Xiao, J. & Li, P. 2021. Hyperoside attenuates non-alcoholic
fatty liver disease in rats via cholesterol metabolism and bile acid
metabolism. Journal of Advanced Research 34: 109-122. https://doi.org/ 10.1016/j.jare.2021.06.001
Wen, B., Zhou, R., Feng, Q., Wang, Q., Wang, J. & Liu, S. 2014. IQuant: An automated pipeline for quantitative proteomics
based upon isobaric tags. Proteomics 14(20): 2280-2285. https://doi.org/10.1002/pmic.201300361
Wu, Q., Yang, F. & Tang, H. 2021. Based on network pharmacology
method to discovered the targets and therapeutic mechanism of Paederia scandens against nonalcoholic fatty liver disease in chicken. Poultry Science 100(1): 55-63. https://doi.org/
10.1016/j.psj.2020.09.087
Wu, Z., Zhang, Y., Gong, X., Cheng, G., Pu, S. & Cai,
S. 2020. The preventive effect of phenolic-rich extracts from Chinese sumac
fruits against nonalcoholic fatty liver disease in rats induced by a high-fat
diet. Food & Function 11(1):
799-812. https://doi.org/10.1039/C9FO02262G
Xiao, M., Ying, L., Li, S., Fu, X. & Du, G. 2019. Progress on
research and development of Paederia scandens as a natural medicine. Int. J. Clin. Exp. Med. 12: 158-167.
Xu, Y., Zeng, J., Wang, L., Xu, J., He, X. & Wang, Y. 2023.
Anti-inflammatory iridoid glycosides from Paederia scandens (Lour.) Merrill. Phytochemistry 212: 113705. https://doi.org/10.1016/j.phytochem.2023.113705
Yan, T., Yan, N., Wang, P., Xia, Y., Hao, H.,
Wang, G. & Gonzalez, F.J. 2020. Herbal drug discovery for the treatment of
nonalcoholic fatty liver disease. Acta Pharmaceutica Sinica B 10(1):
3-18. https://doi.org/10.1016/j.apsb.2019.11.017
Yoshikawa, T., Ide, T., Shimano, H., Yahagi, N., Amemiya-Kudo,
M., Matsuzaka, T., Yatoh, S., Kitamine,
T., Okazaki, H. & Tamura, Y. 2003. Cross-talk between peroxisome proliferator-activated
receptor (PPAR) α and liver X receptor (LXR) in nutritional regulation of
fatty acid metabolism. I. PPARs suppress sterol regulatory element binding
protein-1c promoter through inhibition of LXR signaling. Molecular Endocrinology 17(7): 1240-1254.
https://doi.org/10.1210/me.2002-0190
Yu, H., Chen, Y., Kong, H., He, Q., Sun, H., Bhugul,
P.A., Zhang, Q., Chen, B. & Zhou, M. 2018. The rat pancreatic body tail as
a source of a novel extracellular matrix scaffold for endocrine pancreas
bioengineering. J. Biol. Eng. 12:
6. https://doi.org/10.1186/s13036-018-0096-5
Zhang, Y-Q., Mao, X., Guo, Q-Y., Lin, N. &
Li, S. 2016. Network pharmacology-based approaches capture essence of Chinese
herbal medicines. Chinese Herbal
Medicines 8(2): 107-116. https://doi.org/10.1016/S1674-6384(16)60018-7
Zhou, J., Ho, C-T., Long, P., Meng, Q., Zhang,
L. & Wan, X. 2019. Preventive efficiency of green tea and its components on
nonalcoholic fatty liver disease. Journal
of Agricultural and Food Chemistry 67(19): 5306-5317. https://doi.org/
10.1021/acs.jafc.8b05032
Zhu, W., Pang, M., Dong, L., Huang, X., Wang, S. & Zhou, L. 2012.
Anti-inflammatory and immunomodulatory effects of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae)
on uric acid nephropathy rats. Life
Sci. 91(11-12): 369-376. https://doi.org/10.1016/j.lfs.2012.08.013
Zhu, H., Xiao, M-Z. &
Li, X-D. 2019. Network pharmacology analysis of the mechanism of action of Paederia scandens in the treatment of NAFLD. Gastroenterology
& Hepatology 1(1): 25. https://doi.org/10.12032/ghr2019-12-006
*Corresponding
author; email: wuqiangfirst@163.com
|